Optimal Timing of Preventive Maintanance Kickoff Meeting

Mihai O. Marasteanu University of Minnesota

Introduction

- Current guidelines for applying maintenance treatments based on observations of pavement surface condition
- Significant resources can be saved if reactive maintenance activities are replaced by proactive activities
- > This approach requires
 - Better understanding of the fundamental mechanisms that control the deterioration process
 ✓Role played by "aging"
 - Better detection methods of the inception of deterioration, in particular at the surface

 \checkmark Formation of micro cracks

Introduction

- "Aging" in asphalt binders is generally accepted to be the cause of hardening of the asphalt over time
- The primary mechanisms of age hardening were determined to be
 - Oxidation
 - Loss of volatiles
 - Steric hardening
- > These mechanisms are very complex
 - The evolution with time and relationship to mechanical properties not well understood

Introduction

- Recent study at the U focused on finding an optimum application time for surface treatments
 - Use field mixture and binder samples to

✓ Detect and quantify "aging" products

 Measure mechanical properties to quantify effect of "aging" on these properties

- Investigate methods to detect presence of microcracks on pavement surface
- Extensive investigation of temperature variation in pavements exposed to real environmental conditions using MnROAD extensive data base

Surface Treatment Timing - TH 56

Section No.	Seal coat application year	Pavement construction year	Age when treated	Agg. Type	Emulsion rate (gal/yd ²)	Agg. rate (lb/yd ²)	Fog Seal rate (gal/yd ²)
10	Control	1999	N/A	N/A	-	-	-
14	2000	1999	1	NUQ	0.22	10	0.11
15	2000	1995	5	NUQ	0.32	10	0.11
13	2001	1999	2	DTR	0.24	17 10	0.11
16	2001	1995	6	DTR	0.54	1/-10	0.11
12	2002	1999	3	DTR	0.38-0.42	18-22	0.11
17	2002	1995	7	DTR	0.40-0.44	18	0.11
11	2003	1999	4	DTR	0.4	19	0.13
18		1995	8	DTR	0.44	19.5	0.13
19	Control	1995	N/A	N/A	_	_	_

TH 56

Specimen ID	Work Item	Material ID	Date	Depth(in)	Width(ft)	Mode
56-16-95-B-3	Bituminous Overlay	41	7/1/1995	4	24	In place
56-16-95-W-3	Mill Bituminous		7/1/1995	-1.5	24	In place
56-17-95-B-3	Spot Overlay	31	6/4/1980	1	NA	In place
56-17-95-W-3	Bituminous Overlay	31	10/6/1970	1.5	25	In place
	Bituminous Overlay	41	10/6/1970	3	24	In place
	Agg. Seal Coat	F1	6/29/1966	NA	NA	In place
	Spot Overlay	**	9/17/1959	1	NA	In place
	Spot Overlay	**	8/18/1955	1	NA	In place
	Agg. Seal Coat	**	9/29/1952	NA	NA	In place
	Agg. Seal Coat	**	9/29/1952	NA	NA	In place
	Agg. Seal Coat	**	7/29/1950	NA	NA	In place
	Bituminous Layer	31	7/29/1950	1.5	24	New
	Bituminous Layer	31	7/29/1950	1	26	New
	Agg. Base Layer	**	7/29/1950	1.5	42	New

Surface Treatment Type - TH 251

Treatment	Specimen ID	Thickness (in)	Offset from Centerline	Location
	251-2-B-1	6 1/4	6'-6"	RP 9+00.123
	251-2-B-2	6 1/4	6'-6"	RP 9+00.123
Control	251-2-B-3	6 1/4	6'-6"	RP 9+00.123
Control	251-2-W-1	6 1/2	9'-0"	RP 9+00.124
	251-2-W-2	6 1/2	9'-0"	RP 9+00.124
	251-2-W-3	6 1/2	9'-0"	RP 9+00.125
	251-3-B-1	6	4'-0"	RP 9+00.304
	251-3-B-2	6	4'-0"	RP 9+00.305
CSS-1h	251-3-B-3	5 3/4	4'-0"	RP 9+00.305
2002	251-3-W-1	5 3/4	8'-0"	RP 9+00.303
	251-3-W-2	5 3/4	8'-0"	RP 9+00.303
	251-3-W-3	6	8'-0"	RP 9+00.304
	251-6-B-1	4 7/8	5'-6"	RP 9+00.578
	251-6-B-2	4 7/8	5'-6"	RP 9+00.578
Reclamite	251-6-B-3	4 7/8	5'-6"	RP 9+00.578
2002	251-6-W-1	5	7'-6"	RP 9+00.579
	251-6-W-2	5	7'-6"	RP 9+00.579
	251-6-W-3	5	7'-6"	RP 9+00.580
	251-8-B-1	5 3/8	5'-6"	RP 9+00.810
	251-8-B-2	5 3/8	5'-6"	RP 9+00.810
Chip Seal	251-8-B-3	5 3/8	5'-6"	RP 9+00.810
2002	251-8-W-1	5 1/8	8'-6"	RP 9+00.811
	251-8-W-2	5 1/8	8'-6"	RP 9+00.811
	251-8-W-3	5 1/4	8'-6"	RP 9+00.812

Detecting Aging Products

- Detection of oxidation products (ketones, etc) by means of a simple experiment is of significant importance
- FTIR spectral analysis has been performed on samples of asphalt binder extracted from field mixtures.
 - Concerns related to the use of chemical solvents in the extraction process
- > Can it be done directly on mixtures?
 - Research in progress at Western Research Institute

 NMR and FTIR-ATR methods
 - Worked performed in Australia (Norrison, E&E 2004)
 X-Ray Photoelectron Spectroscopy (XPS)

X-Ray Photoelectron Spectroscopy

- The limited results obtained in this study indicated that XPS test is capable of detecting the presence of oxidized carbon functional groups
 - However, very little C=O functional groups were detected
 - Furthermore, the amounts of ketones varied significantly between the replicates of the same sample, indicating poor repeatability of the test
- Therefore, this procedure may not be very useful for routine investigation of aging in asphalt pavements

Fourier Transform Infrared Spectroscopy

- > Mature technique
 - One of the most widespread methods used to identify and quantify amounts of known and unknown materials
- Currently used to detect aging products in asphalt binders (e.g. carbonyl peak)
 - Requires chemical extraction of binders
- > Analysis of the spectra needs to be carefully done
 - Need the spectra of the original binders to quantify aging
 - Not always possible unless long range research

Fourier Transform Infrared Spectroscopy

- Research in Minnesota focused on quantifying "aging" variation with layer depth
 - Samples extracted from pavement cores
 - Thin slices, with a thickness of approximately 5 mm each, cut from the cores

✓ Sample A represents the first slice (top of the core)

> Results indicate most aging occurs in the top 5mm

Sacrificial layer?

✓ Replace or "rejuvenate" periodically?

MINN	ESOTA
DEP	A 2
ART	PTA
MEN.	NEPO
'OF1	RAN

Sample Prep: Extraction with THF and then evaporated to dryness (ran as solid).
Intrument: Thermo Nicolet Nexus 470
Atmosphere: Ambient with automatic H2O and CO2 surpression
Test Fixture: ATR with ZnSe crystal
Area Calculation: Ratio of peak area at 1700 cm-1 to the peak area at 1375 cm-1 using

are	a at 137	'5 cm-1 using			
TQ Analyst software					
package.					
Cell and Binder:	03/28,	120/150			

03/28

Layer

Unaged

А

В

С

D

Е

F

G

Н

Т

J

Κ

L

Μ

Ν

0

Р

Q

R

S

Т

U

V

W

Х

Υ

Ζ

Calculated

Area

-0.16

0.32

0.06

-0.05

0.06

-0.06

-0.05

-0.10

-0.04

-0.13

-0.03

-0.06

-0.08

-0.12

-0.06

-0.02

-0.04

-0.03

-0.04

-0.02

0.06

Normalized

Area

0.00

0.48

0.22

0.11

0.22

0.10

0.11

0.06

0.12

0.03

0.13

0.10

0.08

0.04

0.10

0.14

0.12

0.13

0.12

0.14

0.22

Mechanical Properties

- > Goal: identify change in properties with pavement age
 - DSR, BBR, DT tests on asphalt binder extracted from cores

✓ Very limited quantities

Chemical extraction may affect properties

 SCB, IDT tests on mixture specimens cut from cores taken from pavements

✓ Test specimens very large (2" to 6" for E*)

 Cannot identify aging effect with pavement depth

BBR on Mixture Beams

- Used method proposed by U research team in 2005
 - Evaluate change in mixture properties with asphalt layer depth
 - \checkmark Aging effects
 - ✓Other effects (compaction, lift, etc)
 - Can also be used to back calculate binder properties
 - ✓ Important for determining allowable limits for adding RAP

BBR on Mixture Beams

- Creep test performed at <u>low</u> <u>temperatures</u> using the same equipment used to grade asphalt binders
 - Bending Beam Rheometer
- Comparison with results from IDT very encouraging
- Work in progress to understand why it works
 - Representative Volume Element at low temperature

Micro Cracks Detection

- Most maintenance actions triggered from <u>visual</u> observations of the pavement surface
 - Can distresses (cracks) be detected in the initial stage of formation and propagation?

✓ Significant savings using proactive approach

- Potential methods to detect micro cracks on the pavement surface were investigated
 - Two specific features of asphalt pavements make micro cracks detection very difficult

✓ Pavement surface texture

- Ability of asphalt pavements to "heal"
 - Best time to detect micro cracks: late fall and winter?

Electron Microprobe

- > Specimen preparation expensive and time consuming
- Specimen tested might not be representative of what is observed in the field
 - Localized nature of the test
- > Only cracks on the surface of the aggregates detected
 - Crushing process or field compaction?
 - Crack initiators at low and intermediate
 temperatures can aggregate crushing be avoided?
 - Mastic healing at room temperature?
 - ✓ Special storage of test specimen at low temperature

Fluorescent Penetrant

- Need simpler method that provides global evaluation of the pavement surface
- One potential method: fluorescent dyes to detect micro cracks
 - Used in several industries: aerospace, automotive, welding, pipelines, steel mills
 - Recent studies on dental ceramic materials indicated that microscopic cracks of critical sizes could be detected using the fluorescent penetrant method, which were not detectable by light-optical microscopy and SEM.

Fluorescent Penetrant

Fluorescent Penetrant

- > Further work needed considering the following ideas
 - Mix penetrant with a surfactant to enhance its ability to penetrate microcracks
 - ✓ Add 1% dish washing soap
 - ✓Use 1% non-ionic surfactant solution of ethylene oxide with low critical micelle concentration
 - Use powerful UV lamp and develop better surface preparation and cleaning techniques
 - Perform field tests (MnROAD) at night time
 - ✓ Measurements on the exact same area at different temperature regimes (summer vs. winter)

Remote Sensing

- Over the past years attempts to evaluate pavement condition at MnROAD using remote sensing
 - High resolution aerial pictures taken from aircraft flying at low altitude
 - ✓Low temperature cracking patterns
 - ✓ Very expensive
 - Most of the information can be obtained from instrumented vans
 - ✓ Recently abandoned
- > Satellite images
 - Resolution too low for commercial satellites

Aerial Photography

Satellite Images

Images now available on Google Earth

Remote Sensing in Transportation

- The U.S. Department of Transportation (USDOT) and the Research and Special Programs Administration (RSPA) established The National Consortia on Remote Sensing in Transportation (NCRST) in 2000
- Four university-led consortia were set up
 - Environment
 - Infrastructure led by University of California Santa Barbara (<u>http://www.ncgia.ucsb.edu/ncrst/</u>)
 - Traffic Flows
 - Hazards

Spectral Analysis of Asphalt Pavement Surface

- In past years, advanced detection systems used primarily in atmospheric and environmental applications have been used as potential investigative tools in transportation
 - Studies performed by UCSB researchers have shown that the principles of imaging spectrometry can be used to estimate the physical structure and chemical composition of the surface of asphalt pavements
 - It may become possible to use spectral characteristics of asphalt pavements to provide useful information regarding aging and deterioration of the road

Figure 1: Spectral effects of asphalt aging and deterioration from the ASD ground spectral measurements (the major water vapor absorption bands are interpolated).

Spectral Analysis of Asphalt Pavement Surface

- Significant more research needed "pavement health" estimation is very complex
 - 40 different physical pavement properties listed in the pavement condition rating manual (ASTM D6433)
 - Some refer to visual characteristics
 - Others address subsurface conditions that spectral sensors do not see

✓ Ground penetrating equipment needed

In the short term, remote sensing may offer some insight into subsurface conditions and other aspects usually detected through destructive testing

Temperature Analysis

- Substantial analysis of measured pavement temperature data from the MnROAD facility
 - Measured pavement temperatures were characterized at diurnal and seasonal time scales, including daily extreme temperatures and temperature gradients, diurnal cycling, and seasonal variations
- Simulations of pavement temperature using a onedimensional finite difference heat transfer model
 - Provided detailed information on temperature gradients in the pavement and on the surface heat transfer components

Daily mean, maximum, and minimum surface and pavement temperature for test cell 33, 2004

High Cooling Event

High Heating Event

Simulated vs. Measured (Cell 33, 2.5cm depth)

My "two cents"

- Define what aging is, what are the "markers" of aging, and specify how to detect them
- Investigate and quantify/model aging effect on mechanical properties over the entire spectrum of service temperatures
 - Fracture and fatigue resistance
 - Stiffness, modulus, phase angle, etc
- > Investigate and quantify/model aging progress with time
 - Need long term research
- Propose and investigate methods to counteract aging and determine when is the best time to apply them

Thank you!

