#### Expected Performance of MnRoad Composite Pavements

Michael I. Darter, PE Applied Research Associates, Inc.

#### August 23, 2010 MnRoad Open House



TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES

### Presentation

- Performance measures
- Initial performance results
- Prediction of future performance
  - HMA / RCA
  - EAC / RCA
  - EAC / LCC
- Summary

### Performance Measures

- HMA surface on Recycled Aggregate Concrete (RCA): Initial & over Time
  - Smoothness, IRI
  - Texture depth
  - Noise
  - Friction
  - Rutting
  - Fatigue Cracking (transverse, longitudinal)
  - Joint Reflection Cracking (HMA)
    - No treatment
    - Saw & Sealed joints cut in HMA

### Performance Measures

- Instrumentation results (not exactly performance measures, but affect they may performance)
  - Temperature gradations
  - Moisture gradations
  - Dynamic strains (from moving wheel loads)
  - Vibrating wire strains (temperature & moisture)

### Performance Measures

- EAC surface of Recycled Concrete Aggregate (RCA) & Low Cost Concrete (LCC): Initial & over Time
  - Smoothness, IRI
  - Texture depth
  - Noise
  - Friction
  - Fatigue Cracking (transverse, longitudinal)

### Initial Results: Noise

| Surface                                                       | Sound Intensity<br>Level |
|---------------------------------------------------------------|--------------------------|
| HMA                                                           | ???                      |
| Exposed Aggregate Concrete                                    | 101.7 dBA                |
| Conventional Diamond Grind of EAC                             | 100.4 dBA                |
| Next Generation Concrete Surface<br>(Special grinding) of EAC | 98.8 dBA                 |

## Initial Smoothness: IRI

| Surface                       | IRI, in/mile |
|-------------------------------|--------------|
| HMA                           | ???          |
| Exposed Aggregate Concrete    | ???          |
| Conv. Diamond Grind of EAC    | ???          |
| Improved Diamond Grind of EAC | ???          |

Results to be obtained from MnRoad soon.

### Initial Texture, inches ASTM E 965

| Surface                              | Texture<br>Depth, in |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HMA                                  | 0.334                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Exposed Aggregate Concrete           | 0.784                | 11001000 - and a second s |
| Conv. Diamond Grind of EAC           | 1.127                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Next Generation Diamond Grind of EAC | To be<br>measured    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

### **Initial Friction**

| Surface                       | Friction |
|-------------------------------|----------|
| HMA                           | 0.656    |
| Exposed Aggregate Concrete    | 0.615    |
| Conv. Diamond Grind of EAC    | 0.720    |
| Improved Diamond Grind of EAC | 0.547    |

## **Prediction Future Performance**

- AASHTO Mechanistic-Empirical Pavement Design Guide
  - Overlay design procedure for HMA OL of JPCP & Bonded Concrete OL of JPCP
  - Use for new composite pavements?
    - Some limitations, but with proper inputs can be used.
  - Inputs for new composite pavements for 3 MnRoad sections
- Thickness designs were intended for practicality of two layer constructability. They are not intended for long life.

#### **Experimental Plan for Construction at MnROAD**

| Cell 70                                                                                                                          | Cell 71<br>433 m (1420 ft)                                                                                  | Cell 72        |  |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------|--|
| 144 m (474 ft)                                                                                                                   |                                                                                                             | 289 m (947 ft) |  |
| 76-mm (3-in) HMA (S & S joints<br>except for a few joints)                                                                       | 76-mm (3-in) Granite<br>(~145 m (475 ft) diamond grind; ~145 m (475 ft) exposed aggregate)                  |                |  |
| 152-mm (6-in) PCC, 4.6-m (15-ft) joints<br>32-mm (1.25-in) dia. dowels driving<br>lane, nondoweled passing lane.<br>Recycled PCC | 152-mm (6-in) PCC, 4.6-m   m (15-ft) joints, 32-mm   (1.25-in) dia. dowels.   Recycled PCC   (84 m, 275 ft) |                |  |
| 203-mm (8-in) Class 5 Special (Granular Base)                                                                                    |                                                                                                             |                |  |
| Clay Subgrade                                                                                                                    |                                                                                                             |                |  |

- Traffic: I-94 WIM data
- Climate: Nearest weather stations
- HMA: Test data from MnDOT.
- Concrete: EAC, RCA, LCC test data from FHWA mobile trailer.
- Subgrade: test data from MnDOT & backcalculation of modulus
- Design: joints, dowels, joint spacing, thickness of layers, shoulders

- Traffic: I-94 WIM data MP 200 WBL
  - AADT: 29,000
  - Percent Class 4 to 13 trucks: 12
  - Percent trucks outer lane: 78%
  - Axle load distribution: Used MEPDG defaults, need to obtain MnDOT WIM measured on I-94 at MP 200.

### MEPDG Inputs Vehicle Classification Data

| Vehicle Class | Percent Vehicles |
|---------------|------------------|
| 4             | 2.5              |
| 5             | 12.7             |
| 6             | 4.2              |
| 7             | 0.8              |
| 8             | 3.4              |
| 9             | 66.9             |
| 10            | 4.2              |
| 11            | 1.7              |
| 12            | 0.8              |
| 13            | 2.5              |
| Total         | 100              |

## Climate (5 Weather Stations)

21.9 miles MINNEAPOLIS, MN - CRYSTAL AIRPORT Lat. 45.04 Lon. -93.21 Ele. 872 Months: 101 (C)

25.0 miles ST CLOUD, MN - ST CLOUD REGIONAL AIRPORT Lat. 45.32 Lon. -94.03 Ele. 1024 Months: 116 (M1)

32.0 miles MINNEAPOLIS, MN - FLYING CLOUD AIRPORT Lat. 44.5 Lon. -93.28 Ele. 922 Months: 100 (C)

34.9 miles MINNEAPOLIS, MN - MINPLIS-ST PAUL INTL ARPT Lat. 44.53 Lon. -93.14 Ele. 874 Months: 116 (C)

39.2 miles ST PAUL, MN - ST PAUL DWTWN HOLMAN FD AP Lat. 44.56 Lon. -93.03 Ele. 711 Months: 116 (M6)

- HMA materials data
  - PG Grade: 64-34
  - Percent asphalt: 5.4 % by weight (assume 10.8% by volume)
  - Percent inplace air voids: 5.5 % measured
  - Density: 148 pcf
  - Gradation of HMA
    - Retained on  $\frac{3}{4}$  in = 0%
    - Retained on 3/8 in = 20%
    - Retained on #4 = 40%
    - Passing #200 = 4.3%

• Concrete: EAC, RCA, LCA test data

| Test                          | EAC       | RCA       | LCC       |
|-------------------------------|-----------|-----------|-----------|
| Flexural<br>Strength, psi     | 854 psi   | 677       | 548       |
| Modulus of<br>Elasticity, psi | 4.9 M psi | 4.9 M psi | 5.1 M psi |
| Coef.<br>Expansion            | 5.6/F     | 5.8/F     | 5.4/F     |
| Poisson's<br>Ratio            | 0.23      | 0.25      | 0.23      |

### Layer Thickness (from cores)

| Section      | HMA/RCA | EAC / RCA | EAC / LCC |
|--------------|---------|-----------|-----------|
| Top Layer    | 3.0 in  | 3.5 in    | 2.9 in    |
| Bottom Layer | 6.3 in  | 5.6 in    | 6.7 in    |

- Unbound base course:
  - 8-in thick
  - Class 5 granular base per MnDOT specifications.
  - Used default of 18,000 psi.

- Subgrade: FWD tested on top of slab & backcalculation of subgrade modulus (dynamic k-value, kd)
- Mean backcalculated k-value = 140 psi/in.
- Corresponding Input Mr = 14,000 psi at optimum density and water content gives k-value output of about 140 psi/in. This Mr is about the default for A-6 soil.

#### • Design:

- Joint spacing: 15-ft
- Joint sealing: None, single saw blade cut
- Dowels:
  - Driving lane: 1.25-in diameter, 12-in spacing
  - Passing lane: No dowels

## HMA/RCA Predictions

- MEPDG outputs:
  - Slab fatigue transverse cracking
  - Rutting of HMA
  - IRI
- Other potential distress
  - Transverse saw and seal joints



### 3-in HMA / 6-in RCA Section



### Saw & Seal Transverse Joints



#### Slab Cracking, 3-in HMA / 6-in RCA

**Predicted Cracking** 



#### Rutting, 3-in HMA / 6-in RCA

**Permanent Deformation: Rutting** 



## MEPDG Prediction HMA / RCA

| Age / Trucks           | % Slab Cracking | Rutting, in | Smoothness<br>IRI, in /mile |
|------------------------|-----------------|-------------|-----------------------------|
| 0                      | 0               | 0           | 63                          |
| 5 years<br>3 million   | 0.3             | 0.09        | 94                          |
| 10 years<br>6 million  | 1.2             | 0.13        | 100                         |
| 15 years<br>10 million | 2.7             | 0.17        | 107                         |

Reflection cracking of transverse joints: controlled by saw and seal.

# HMA / RCA Composite after 10 years and 6 million trucks

- Transverse Cracking < 5 % slabs.
- Rutting < 0.10 in. mean.
- IRI < 125 in/mile.
- Two layer HMA over RCA composite pavement should be in good condition after 10 years and 6 million trucks in driving lane.
  - Major question: will saw and seal of transverse joints hold up?

## EAC / RCA Predictions

- MEPDG outputs:
  - Slab fatigue transverse cracking
  - Transverse joint faulting
  - IRI

### 3-in EAC / 6-in RCA



### 3-in EAC / 6-in RCA



### 3-in EAC / 6-in LCC



### Slab Cracking, 3-in EAC / 6-in RCA

**Predicted Cracking** 



### Joint Faulting, 3-in EAC / 6-in RCA

**Predicted Faulting** 



### IRI, 3-in EAC / 6-in RCA

**Predicted IRI** 



## MEPDG Prediction EAC / RCA

| Age / Trucks           | % Slab Cracking | Joint Faulting, in | Smoothness<br>IRI, in /mile |
|------------------------|-----------------|--------------------|-----------------------------|
| 0                      | 0               | 0                  | 63                          |
| 5 years<br>3 million   | 0.8             | 0.02               | 82                          |
| 10 years<br>6 million  | 2.7             | 0.05               | 103                         |
| 15 years<br>10 million | 5.9             | 0.07               | 125                         |

# EAC / RCA Composite after 10 years and 6 million trucks

- Transverse Cracking < 5 % slabs.
- Joint faulting < 0.10 in. mean.
- IRI < 125 in/mile.
- Two layer composite concrete pavement should be in good condition after 10 years and 6 million trucks in driving lane.

## EAC / LCC Predictions

- MEPDG outputs:
  - Slab fatigue transverse cracking
  - Transverse joint faulting
  - IRI

### Cracking, EAC / LCC Predictions



Pavement age, years

## Faulting, EAC / LCC Predictions

**Predicted Faulting** 



Pavement age, years

### IRI, EAC / LCC Prediction



Pavement age, years

## Comparison RCA & LCC

| Property                                          | Recycled Aggregate<br>Concrete, RCA | Low Cost Concrete,<br>LCC |
|---------------------------------------------------|-------------------------------------|---------------------------|
| Cement, pounds                                    | 360                                 | 240                       |
| Flyash, pounds                                    | 240                                 | 360                       |
| Compressive Strength, psi                         | 4300                                | 5062                      |
| Flexural Strength, psi                            | 665                                 | 650                       |
| Modulus Elasticity, psi                           | 4.8 million                         | 5.1 million               |
| Coefficient of Thermal<br>Expansion, per degree F | 5.8                                 | 5.4                       |

## MEPDG Prediction EAC / LCC

| Age / Trucks           | % Slab Cracking | Joint Faulting, in | Smoothness<br>IRI, in /mile |
|------------------------|-----------------|--------------------|-----------------------------|
| 0                      | 0               | 0                  | 63                          |
| 5 years<br>3 million   | 0.2             | 0.02               | 78                          |
| 10 years<br>6 million  | 0.7             | 0.03               | 95                          |
| 15 years<br>10 million | 1.6             | 0.05               | 112                         |

# EAC / LCC Composite after 10 years and 6 million trucks

- Transverse Cracking < 5 % slabs.
- Joint faulting < 0.10 in. mean.
- IRI < 125 in/mile.
- Two layer composite concrete pavement with "cheap" concrete lower layer should be in good condition after 10 years and 6 million trucks in driving lane.

#### What If? 30-year Design: 23 million Trucks

- 3-in HMA / 8-in RCA
  - No structural fatigue cracking
  - HMA would need replacement at 8 to 15 years depending on:
    - Saw and seal transverse joints: will these hold up?
    - Rutting of HMA

#### What If? 30-year Design: 23 million Trucks

- 3-in EAC / 8-in RCA
  - No structural fatigue cracking
  - Some joint faulting and roughness.
  - EAC should perform with no problems: good friction, no significant wear.
  - Diamond grinding should perform with no problems: good friction, low noise.

### **30-year Design: 23 million Trucks**

- 3-in EAC / 8-in LCC
  - No structural fatigue cracking
  - Some joint faulting and roughness.
  - EAC should perform with no problems: good friction, no significant wear.
  - Diamond grinding should perform with no problems: good friction, low noise.

## Summary

- Construction quality of each section appears to be good.
- Material properties as expected.
- Initial performance measures reasonable.
- Future performance predictions show longer than expected life for HMA/RCA and EAC/RCA and less for EAC/LCC.
- Actual monitoring over time will provide proof of concept.