# SHRP 2 Project R21 (Composite Pavements) Evaluation of MnROAD PCC-PCC Construction

Michael I. Darter, Shreenath Rao, Harold Von Quintus: ARA Lev Khazanovich, Derek Tompkins: University of Minnesota John Harvey, Jim Signore: University of California Ben Worel, Mark Watson, Tim Cline: Mn/DOT (MnROAD) Julie Vandenbossche: University of Pittsburgh

#### August 23, 2010 MnROAD Open House



#### **R21. EAC-RCC Overview**

| Section         |                     | EAC over RCA PCC (MnROAD Cell 71)                                 |  |  |  |
|-----------------|---------------------|-------------------------------------------------------------------|--|--|--|
| Upper<br>PCC    | Thickness           | 3 in                                                              |  |  |  |
|                 | Mix                 | High portland cement (~550 lb/yd3), 15% Fly ash,<br>Class C (FAC) |  |  |  |
|                 | Coarse<br>Aggregate | Crushed granite (maximum size 3/8 in)                             |  |  |  |
| Lower<br>PCC    | Thickness           | 6 in                                                              |  |  |  |
|                 | Mix                 | Low portland cement (~250 lb/yd3), 60% FAC                        |  |  |  |
|                 | Coarse<br>Aggregate | 50% RCA, 50% Mn/DOT Class A<br>Maximum aggregate size 1.25 in     |  |  |  |
| Base            | •                   | 8 in, Class 5 unbound                                             |  |  |  |
| Subgrade        |                     | Clay                                                              |  |  |  |
| Joint spacing   |                     | 15 ft                                                             |  |  |  |
| Doweling        |                     | 1.25 in (located 4.5 in from top of base)                         |  |  |  |
| Surface texture |                     | EAC                                                               |  |  |  |



#### **R21. EAC-RCC Material Properties**

| PCC mix | Compre | ssive streng | Modulus of rupture<br>(psi) |       |        |
|---------|--------|--------------|-----------------------------|-------|--------|
|         | 7 day  | 14 day       | 28 day                      | 7 day | 28 day |
| EAC     | 5044   | 5315         | 5601                        | 739   | 846    |
| RCA     | 3599   | 4117         | 4509                        | 578   | 658    |

- Above are average values for tests conducted on 80+ specimens across these two parameters
- SHRP2 R21 team thanks the FHWA Mobile Concrete Lab for their contributions to the above and for being on-site during construction



#### R21. EAC-Low Cost PCC Overview

| Section         |                     | EAC over Low-cost PCC (MnROAD Cells 71 and 72)           |  |  |  |  |
|-----------------|---------------------|----------------------------------------------------------|--|--|--|--|
| Upper<br>PCC    | Thickness           | 3 in                                                     |  |  |  |  |
|                 | Mix                 | High portland cement (~550 lb/yd <sup>3</sup> ), 15% FAC |  |  |  |  |
|                 | Coarse<br>Aggregate | Crushed granite (maximum size 3/8 in.)                   |  |  |  |  |
| Lower<br>PCC    | Thickness           | 6 in                                                     |  |  |  |  |
|                 | Mix                 | Low portland cement (~250 lb/yd3), 60% FAC               |  |  |  |  |
|                 | Coarse<br>Aggregate | 100% Mn/DOT Class A,<br>Maximum aggregate size 1.25 in   |  |  |  |  |
| Base            | •                   | 8 in, Class 5 unbound                                    |  |  |  |  |
| Subgrade        |                     | Clay                                                     |  |  |  |  |
| Joint spacing   |                     | 15 ft                                                    |  |  |  |  |
| Doweling        |                     | 1.25 in (located 4.5 in from top of base)                |  |  |  |  |
| Surface texture |                     | EAC/Diamond grind                                        |  |  |  |  |



#### **R21. EAC-Low Cost PCC Material Properties**

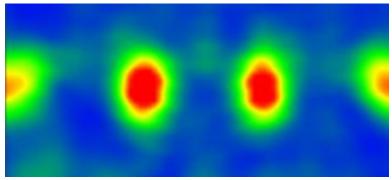
| PCC mix  | Compre | ssive streng | Modulus of rupture<br>(psi) |       |        |
|----------|--------|--------------|-----------------------------|-------|--------|
|          | 7 day  | 14 day       | 28 day                      | 7 day | 28 day |
| EAC      | 5044   | 5315         | 5601                        | 739   | 846    |
| Low-cost | 3773   | 4364         | 5003                        | 468   | 575    |

- Above are average values for tests conducted on 80+ specimens across these two parameters
- Overall compressive and flexural strengths for all 3 concretes are more than adequate for long-lived PCC pavement



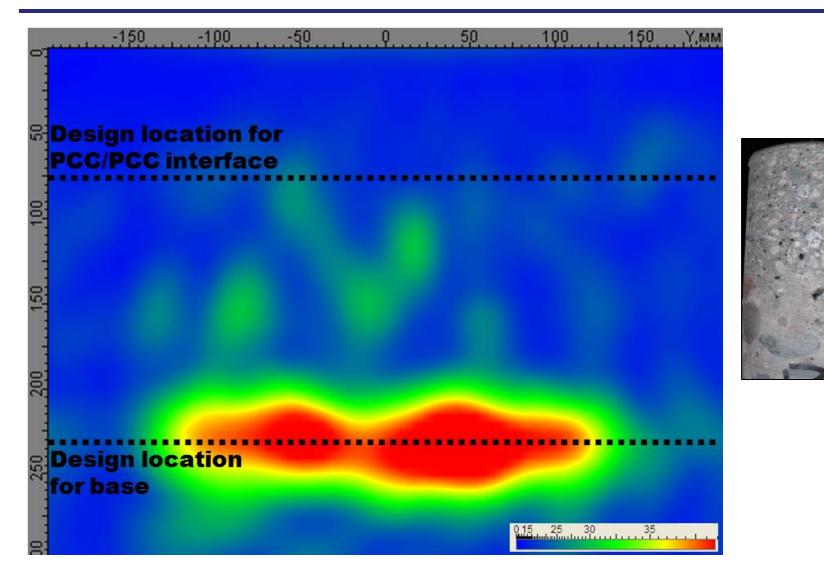
#### R21. Ultrasonic NDT and PCC-PCC interface

- In extreme circumstances (i.e. "worst case scenario"), interface may be compromised
- Use ultrasonic imaging to get quicker QA without sacrificing reliability



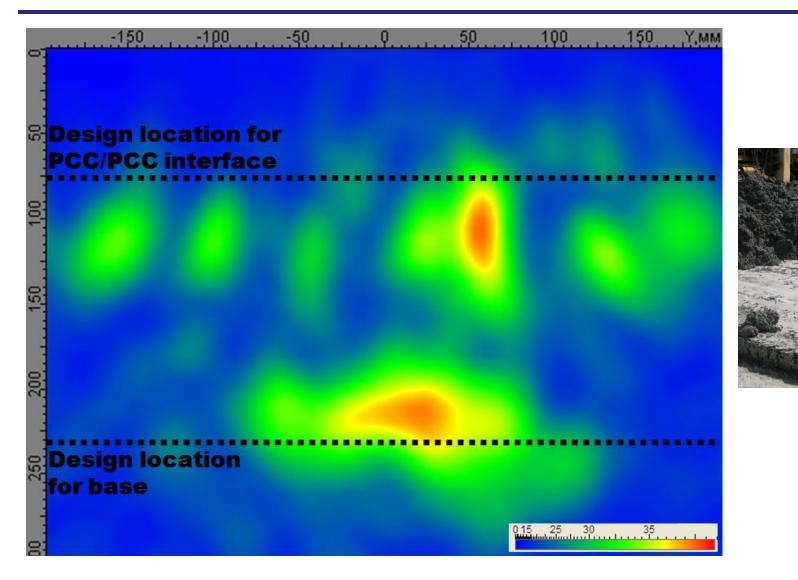



# R21. NDT evaluation, Ultrasound imaging


- Ultrasonic tomography used to evaluate PCC-PCC non-destructively
- Device uses "dry point contact" transducers to make evaluation in seconds
- Device used on R21 MnROAD demo slabs and mainline section








## R21. Tomogram of sound PCC-PCC interface





## R21. Tomogram of poor PCC-PCC interface





#### **R21. EAC texture overview**

- EAC gradation top-size was 12.7 mm (100% passing ½" sieve, 96% passing 3/8" sieve)
- Specified texture depth was 0.8 1.2 mm; final reported uniform texture depth was 0.76 mm
- QC measures used behind brush were aggregate peak picking and sand patch





#### **R21. EAC evaluation**

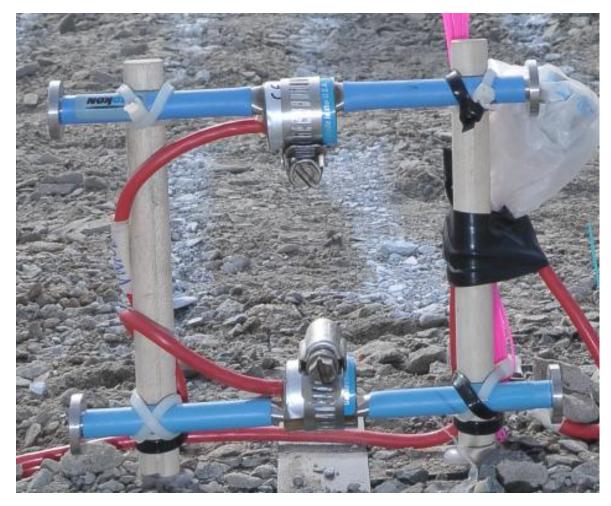
 According to European practice, aimed for 40-50 points per 25 cm<sup>2</sup> in brushing





#### R21. EAC evaluation (2)

- Sand patch conducted regularly to acheive texture 0.8-1.2 mm according to spec
- Test protocol was ASTM E965






## **R21. PCC-PCC instrumentation**

- Instrumentation was helped by use of demo slab construction
- Mainline

   instrumentation
   suffered very
   few casualties,
   currently online
- Data will be available soon





# R21. PCC-PCC instrumentation (2)

- Instrumentation will provide strains, joint opening, temperature, and moisture data
- Will use this response data to validate MEPDG models for PCC-PCC
- Other useful data will be noise and surface friction data from EAC and diamond grind surfacing





#### R21. PCC-PCC evaluation in summary

- Three concretes used in PCC-PCC composites all perform well in compressive and flexural strength
- Complications from material properties should only arise due to inconsistencies from batch to batch (highly variable slump observed in both RCA and EAC concretes on site)
- QA/QC used to assess interface and EAC provided quick, reliable results
- More data to come from installed sensors and from EAC noise/texture

