

HP-35s CALCULATOR PROGRAMS MnDOT Office of Land Management Surveys Research & Support Unit

General Instructions for Running the Programs

The programs prompt for coordinate input and output as X and Y pairs, which correspond to E and N. All angle input and output is north-based AZIMUTH in the form D.MMSSss. Use the XEQ key, a letter label, and the ENTER key (or XEQ *label* 001) to run a program.

Contact

Roy Graff 395 John Ireland Blvd, MS 643 Saint Paul, MN 55155-1899 Phone: (651) 366-3443 Fax: (651) 366-3450 E-mail: roy.graff@state.mn.us

Non-MnDOT users can expect only limited support. Please report program or listing errors.

© Minnesota Department of Transportation, 2006-2012

Warning: The user releases the Minnesota Department of Transportation from all liability resulting from inaccuracies in these application listings.

INVERSE TRAVERSE PROGRAM

XEQ I (XEQ COS ENTER)

- **オ** Enter X-Coord. of Beginning Point R/S
- ↑ Enter Y-Coord. of Beginning Point R/S
- ♠ Enter X-Coord. of Ending Point
 R/S
- ♠ Enter Y-Coord. of Ending Point
 R/S
- ↑ Read Inverse Distance
 R/S
- ↑ Read Inverse Azimuth (D.MMSSss) R/S
- K (Next Beginning Point = This Ending Point}

RADIAL INVERSE PROGRAM

XEQ R (XEQ 7 ENTER)

- Enter X-Coord. of Fixed PointR/SEnter Y-Coord. of Fixed PointR/SImage: Enter X-Coord. of Next PointR/SImage: Enter Y-Coord. of Next PointR/SImage: Enter Y-Coord. of Next PointR/SImage: Read Inverse DistanceR/SImage: Read Inverse Azimuth (D.MMSSss)R/SImage: Enter Next Podial PointR/S
- K (Enter Next Radial Point}

AZIMUTH TRAVERSE PROGRAM

XEQ T (XEQ 9 ENTER)

- T Enter X-Coord. of Beginning Point R/S
- ↑ Enter Y-Coord. of Beginning Point R/S
- ↑ Enter Azimuth to New Point (D.MMSS) R/S
- ♠ Enter Distance to New Point
 R/S
- ↑ Read X-Coord. of New Point R/S
- ↑ Read Y-Coord. of New Point
 R/S
- \mathbf{K} (Next Beginning Point = This New Point)

RADIAL STUB PROGRAM

XEQ S (XEQ 8 ENTER)

	Enter X-Coord. of Fixed Point	R/S
	Enter Y-Coord. of Fixed Point	R/S
7	Enter Azimuth to New Point (D.MMSS)	R/S
♠	Enter Distance to New Point	R/S
♠	Read X-Coord. of New Point	R/S
♠	Read Y-Coord. of New Point	R/S
7	(Enter Next Radial Stub}	

TRIANGLE PROGRAM – SSS

XEQ C (XEQ XEQ ENTER)

Enter Length of First Side	R/S
Enter Length of Second Side	R/S
Enter Length of Third Side	R/S
Read Angle Opposite & First Side	R/S
Read Angle Opposite & Second Side	R/S
Read Angle Opposite & Third Side	R/S
Read Triangle Area	R/S

TRIANGLE PROGRAM – SAA

XEQ E (**XEQ R** \downarrow **ENTER**)

Enter Length of First Side R	/ S
Enter Angle After (DMS) R	/ S
Enter Next Angle (DMS) R	/ S
Read Angle Opposite & First Side R	/ S
Read Angle Opposite & Second Side R	/ S
Read Angle Opposite & Third Side R	/ S
Read Triangle Area R	/ S

TRIANGLE PROGRAM – SAS

XEQ D (XEQ MODE ENTER)

Enter Length of First Side	R/S
Enter Angle Between (DMS)	R/S
Enter Length of Second Side	R/S
Read Angle Opposite & First Side	R/S
Read Angle Opposite & Second Side	R/S
Read Angle Opposite & Third Side	R/S
Read Triangle Area	R/S

XEQ F (XEQ x \checkmark **y ENTER)** Enter Angle Before (DMS)

TRIANGLE PROGRAM – ASA

Enter Angle Before (DMS)	R/S
Enter Length of First Side	R/S
Enter Angle After (DMS)	R/S
Read Angle Opposite & First Side	R/S
Read Angle Opposite & Second Side	R/S
Read Angle Opposite & Third Side	R/S
Read Triangle Area	R/S

TRIANGLE PROGRAM – SSA

XEQ G (XEQ i ENTER)

Enter Length of First Side	R/S
Enter Length of Second Side	R/S
Enter Angle Opposite First Side (DMS)	R/S
Prompt "SOLUTION 1"	R/S
Read Angle Opposite & First Side	R/S
Read Angle Opposite & Second Side	R/S
Read Angle Opposite & Third Side	R/S
Read Triangle Area	R/S
Prompt "SOLUTION 2"	R/S
Read Angle Opposite & First Side	R/S
Read Angle Opposite & Second Side	R/S
Read Angle Opposite & Third Side	R/S
Read Triangle Area	R/S

{Skip Prompt if Single Solution}
{First or Single Solution}

{End of Program if Single Solution}

{Second Solution}

{End of Program}

INTERSECTION PROGRAM – LL

XEQ L (**XEQ** y^x **ENTER**)

Enter X-Coord. of Point on Line 1	R/S	
Enter Y-Coord. of Point on Line 1	R/S	
Enter Azimuth of Line 1 (D.MMSSss)	R/S	{-999 to compute using a second POT}
Enter X-Coord. of Point on Line 2	R/S	
Enter Y-Coord. of Point on Line 2	R/S	
Enter Azimuth of Line 2 (D.MMSSss)	R/S	{-999 to compute using a second POT}
Read X-Coord. of Intersection	R/S	
Read Y-Coord. of Intersection	R/S	
Read Distance Point 1 to Intersection	R/S	
Read Distance Point 2 to Intersection	R/S	{End of Program}
NOTES :		

This calculation is also known as a Bearing-Bearing Intersection. Register X contains the X-Coord. of the Intersection Point Register Y contains the Y-Coord. of the Intersection Point Register D contains the Distance from Point 2 to the Intersection Point

INTERSECTION PROGRAM – LC

XEQ M (XEQ 1/x ENTER)

Enter X-Coord. of Point on Line	R/S	{POT}
Enter Y-Coord. of Point on Line	R/S	{POT}
Enter Azimuth of Line (D.MMSSss)	R/S	{-999 to compute using a second POT}
Enter X-Coord. of Radius Point	R/S	
Enter Y-Coord. of Radius Point	R/S	
Enter Radius of Circle	R/S	
Prompt "SOLUTION 1"	R/S	{First or Single Solution}
Read X-Coord. of Intersection 1	R/S	-
Read Y-Coord. of Intersection 1	R/S	
Read Azimuth, Rad. Pt. to Intersection 1	R/S	
Read Distance, POT to Intersection 1	R/S	{End of Program if Single Solution}
Prompt "SOLUTION 2"	R/S	{Second Solution}
Read X-Coord. of Intersection 2	R/S	
Read Y-Coord. of Intersection 2	R/S	
Read Azimuth, Rad. Pt. to Intersection 2	R/S	
Read Distance, POT to Intersection 2	R/S	{End of Program}
NOTES :		
This calculation is also known as a Bearin	g-Dista	nce Intersection.
Register U contains the X-Coord. of Inters	section I	Point 1
Register V contains the Y-Coord. of Inters	section 1	Point 1
Register W contains the Azimuth from the	e Radius	s Point to Intersection Point 1
Register X contains the X-Coord. of Inters	section 1	Point 2
Register Y contains the Y-Coord. of Inters	section]	Point 2

Register Z contains the Azimuth from the Radius Point to Intersection Point 2

INTERSECTION PROGRAM – CC

XEQ N (XEQ +/- ENTER)

Enter X-Coord. of Radius Point 1	R/S
Enter Y-Coord. of Radius Point 2	R/S
Enter Radius of Circle 1	R/S
Enter X-Coord. of Radius Point 2	R/S
Enter Y-Coord. of Radius Point 2	R/S
Enter Radius of Circle 2	R/S
Prompt "SOLUTION 1"	R/S
Read X-Coord. of Intersection 1	R/S
Read Y-Coord. of Intersection 1	R/S
Read Azimuth, Rad. Pt. 1 to Intersection 1	R/S
Read Azimuth, Rad. Pt. 2 to Intersection 1	R/S
Prompt "SOLUTION 2"	R/S
Read X-Coord. of Intersection 2	R/S
Read Y-Coord. of Intersection 2	R/S
Read Azimuth, Rad. Pt. 1 to Intersection 2	R/S
Read Azimuth, Rad. Pt. 2 to Intersection 2	R/S

{First or Single Solution}

{End of Program}

{End of Program if Single Solution} {Second Solution}

NOTES :

This calculation is also known as a Distance-Distance Intersection.

Register U contains the X-Coord. of Intersection Point 1

Register V contains the Y-Coord. of Intersection Point 1

Register J contains the Azimuth from Radius Point 1 to Intersection Point 1

Register K contains the Azimuth from Radius Point 2 to Intersection Point 1

Register X contains the X-Coord. of Intersection Point 2

Register Y contains the Y-Coord. of Intersection Point 2

Register L contains the Azimuth from Radius Point 1 to Intersection Point 2

Register M contains the Azimuth from Radius Point 2 to Intersection Point 2

R/S

R/S

RATIO PROGRAM

XEQ O (XEQ E ENTER)

- Enter X-Value of Beginning Point
- Enter Y-Value at Beginning Point
- Enter X-Value of Ending Point
- Enter Y-Value at Ending Point
- Displays Ratio X:Y
- Y-Value computation -- key XEQ E 0 1 5 to run Enter an increment for the X-Value R/S
- Enter an increment for the X-ValueX-Value at which to compute Y-Value
- X-Value at which to compute Y-Value R/S
 Read X-Value and computed Y-Value R/S
- R/S {Typically the last station}

{Typically the first station}

R/S {Value at end of taper, super transition, etc.}

{Value at start of taper, super transition, etc.}

R/S {Goes directly into Y-Value computation}

{Facilitates computation at regular intervals}

- {Accept incremented value or enter another}
- {X-Value above and Y-Value below}
- X-Value computation -- key XEQ E 0 2 4 to run
- **才** Y-Value for which to compute X-Value R/S
- Read computed X-Value and Y-Value R/S
- {X-Value above and Y-Value below}

HORIZONTAL CURVE PROGRAM

XEQ H (XEQ SIN ENTER)		
Required – Enter at Least One of the	Followi	ng Three Fields (R/S to Skip) :
Enter the Delta Angle	R/S	{A? D.MMSS}
Enter the Degree of Curve	R/S	{D? D.MMSS – Valid for English Only}
Enter the Curve Radius	R/S	{R? English or Metric}
Optional – Enter One of the Following	g Fields	if Needed :
Enter the Tangent Length	R/S	{T?}
Enter the Curve Length	R/S	{L?}
Enter the Chord Length	R/S	{C?}
Enter the Mid-Ordinate	R/S	{M?}
Enter the External Distance	R/S	{E?}
View the Computed Values :		
Read the Delta Angle	R/S	$\{A=D.MMSS\}$
Read the Degree of Curve	R/S	{D=D.MMSS – Valid for English Only}
Read the Tangent Length	R/S	{T=}
Read the Curve Length	R/S	{L=}
Read the Curve Radius	R/S	{R=}
Read the Chord Length	R/S	{C=}
Read the Mid-Ordinate	R/S	{M=}
Read the External Distance	R/S	{E=}
Read the Sector Area	R/S	{S=}
Read the Segment Area	R/S	{G=}
Read the Fillet Area	R/S	{F=}
Enter the Station of the PI	R/S	{"PI STA"}
Read the PC and PT Stations	R/S	{End of Program}

VERTICAL CURVE (& TANGENT) PROGRAM

XEQ V (XEQ 5 ENTER)

	Enter the PVI Station	R/S
	Enter PVI Elevation	R/S
	Enter the % Grade into the PVI (G1)	R/S
	Enter the % Grade out of the PVI (G2)	R/S
	Enter the Length of the Vertical Curve	R/S
	Read the High or Low Point, If It Exists	R/S
	Enter a Stationing Increment	R/S
7	Enter Any Station	R/S
♠	Read Elevation at the Entered Station	R/S
7	Increment for Next Station	

{Any POT if Computing a Tangent Grade} {Any POT if Computing a Tangent Grade}

- {= G1 if Computing a Tangent Grade}
- {Zero if Computing a Tangent Grade}
- {Elevation in Y- & Station in X-Registers}
- {Prompt is STA INC}
- {Prompt is S?}
- {Display E=}

Last Updated on May 10, 2012

AREA BY COORDINATES PROGRAM

XEQ A (XEQ R/S ENTER) Enter X-Coord. of Beginning Point R/S Enter Y-Coord. of Beginning Point R/S **7** Enter X-Coord. of Next Point R/S ↑ Enter Y-Coord. of Next Point R/S ■ Repeats Until Beginning Point Is Re-entered Read Area in Square Feet (or Meters) R/S Read Area in Acres (Assuming Feet) R/S Read Perimeter R/S

{Coordinates are assumed to be in feet.} {If units are Meters, ignore this value.}

{End of Program}

HMS+ PROGRAM

Enter the first angle in DDD.MMSSss Enter the angle to add in DDD.MMSSss Read the sum of the angles in DDD.MMSSss ENTER XEQ P [XEQ() ENTER]

HMS-PROGRAM

Enter the first angle in DDD.MMSSss Enter the angle to subtract in DDD.MMSSss Read the difference of the angles in DDD.MMSSss ENTER

+/- XEQ P [XEQ() ENTER]

POLAR \rightarrow **RECTANGULAR** (y,x $\rightarrow \theta$,r) **FUNCTION**

Enter the Distance Enter the Azimuth (D.MMSSss) Read the X-Coordinate difference Read the Y-Coordinate difference ENTER XEQ J [XEQ TAN ENTER] {X-Difference in the Y-Register} {Y-Difference in the X-Register}

RECTANGULAR \rightarrow **POLAR** (θ , r \rightarrow y,x) **FUNCTION**

Enter the X-Coordinate difference Enter the Y-Coordinate difference Read the resulting distance Read the resulting azimuth in DDD.MMSSss ENTER XEQ K [XEQ \sqrt{x} ENTER] {Distance in the Y-Register} {Azimuth in the X-Register}

BEARING → AZIMUTH PROGRAM

XEQ B (XEQ GTO ENTER)

7	Enter the Bearing to be converted	R/S
♠	Enter the Quadrant code of the bearing	R/S

■ Read the Azimuth

{In DMS} {1 = NE, 2 = SE, 3 = SW, 4 = NW} {In DMS}

AZIMUTH → BEARING PROGRAM XEQ Q (XEQ EQN ENTER)

7 Enter the Azimuth to be converted R/S {DMS}
↑ Read the Bearing R/S {DMS}
▼ Read the Quadrant code of the bearing R/S {1 = NE, 2 = SE, 3 = SW, 4 = NW}

R/S