HP－35s CALCULATOR PROGRAMS MnDOT Office of Land Management Surveys Research \＆Support Unit

General Instructions for Running the Programs

The programs prompt for coordinate input and output as X and Y pairs，which correspond to E and N ．All angle input and output is north－based AZIMUTH in the form D．MMSSss．Use the XEQ key，a letter label，and the ENTER key（or XEQ label 001）to run a program．

Contact

Roy Graff
395 John Ireland Blvd，MS 643
Saint Paul，MN 55155－1899

Phone：（651）366－3443
Fax：（651）366－3450
E－mail：roy．graff＠state．mn．us

Non－MnDOT users can expect only limited support．Please report program or listing errors．
Minnesota Department of Transportation，2006－2012
Warning：The user releases the Minnesota Department of Transportation from all liability resulting from inaccuracies in these application listings．

INVERSE TRAVERSE PROGRAM

XEQ I（XEQ COS ENTER）
$\boldsymbol{\lambda}$ Enter X－Coord．of Beginning Point R／S
\uparrow Enter Y－Coord．of Beginning Point R／S
\uparrow Enter X－Coord．of Ending Point R／S
\uparrow Enter Y－Coord．of Ending Point R／S
\uparrow Read Inverse Distance R／S
\uparrow Read Inverse Azimuth（D．MMSSss）R／S
下（Next Beginning Point＝This Ending Point $\}$

RADIAL INVERSE PROGRAM

XEQ R（XEQ 7 ENTER）
Enter X－Coord．of Fixed Point R／S
Enter Y－Coord．of Fixed Point R／S
7 Enter X－Coord．of Next Point R／S
个 Enter Y－Coord．of Next Point R／S
\uparrow Read Inverse Distance R／S
\uparrow Read Inverse Azimuth（D．MMSSss）R／S
$\boldsymbol{\kappa}$（Enter Next Radial Point\}

AZIMUTH TRAVERSE PROGRAM

XEQ T（XEQ 9 ENTER）
$\boldsymbol{\pi}$ Enter X－Coord．of Beginning Point R／S
\uparrow Enter Y－Coord．of Beginning Point R／S
\uparrow Enter Azimuth to New Point（D．MMSS）R／S
\uparrow Enter Distance to New Point R／S
\uparrow Read X－Coord．of New Point R／S
\uparrow Read Y－Coord．of New Point R／S
$\boldsymbol{\kappa}$（Next Beginning Point $=$ This New Point $\}$

RADIAL STUB PROGRAM

XEQ S（XEQ 8 ENTER）
Enter X－Coord．of Fixed Point R／S
Enter Y－Coord．of Fixed Point R／S
$\boldsymbol{\pi}$ Enter Azimuth to New Point（D．MMSS）R／S
个 Enter Distance to New Point R／S
\uparrow Read X－Coord．of New Point R／S
\uparrow Read Y－Coord．of New Point R／S
下（Enter Next Radial Stub\}

TRIANGLE PROGRAM - SSS

XEQ C (XEQ XEQ ENTER)
Enter Length of First Side R/S
Enter Length of Second Side R/S
Enter Length of Third Side
Read Angle Opposite \& First Side
Read Angle Opposite \& Second Side
Read Angle Opposite \& Third Side
Read Triangle Area
R/S
R/S
R/S
\section*{R/S}
R/S

TRIANGLE PROGRAM - SAS

XEQ D (XEQ MODE ENTER)
Enter Length of First Side
R/S
Enter Angle Between (DMS)
Enter Length of Second Side
Read Angle Opposite \& First Side
Read Angle Opposite \& Second Side
R/S
R/S

Read Angle Opposite \& Third Side
R/S

R/S

Read Triangle Area

R/S

R/S

TRIANGLE PROGRAM - SAA
XEQ E (XEQ R \downarrow ENTER)
Enter Length of First Side
R/S
Enter Angle After (DMS) R/S
Enter Next Angle (DMS) R/S
Read Angle Opposite \& First Side R/S
Read Angle Opposite \& Second Side R/S
Read Angle Opposite \& Third Side R/S
Read Triangle Area R/S

TRIANGLE PROGRAM - ASA
XEQ F (XEQ x \downarrow y ENTER)
Enter Angle Before (DMS) R/S
Enter Length of First Side R/S
Enter Angle After (DMS) R/S
Read Angle Opposite \& First Side R/S
Read Angle Opposite \& Second Side R/S
Read Angle Opposite \& Third Side R/S
Read Triangle Area R/S

TRIANGLE PROGRAM - SSA

$\begin{array}{ll}\text { XEQ G (XEQ i ENTER) } & \\ \text { Enter Length of First Side } & \text { R/S } \\ \text { Enter Length of Second Side } & \text { R/S } \\ \text { Enter Angle Opposite First Side (DMS) } & \text { R/S } \\ \text { Prompt "SOLUTION 1" } & \text { R/S } \\ \text { Read Angle Opposite \& First Side } & \text { R/S } \\ \text { Read Angle Opposite \& Second Side } & \text { R/S } \\ \text { Read Angle Opposite \& Third Side } & \text { R/S } \\ \text { Read Triangle Area } & \text { R/S } \\ \text { Prompt "SOLUTION 2" } & \text { R/S } \\ \text { Read Angle Opposite \& First Side } & \text { R/S } \\ \text { Read Angle Opposite \& Second Side } & \text { R/S } \\ \text { Read Angle Opposite \& Third Side } & \text { R/S } \\ \text { Read Triangle Area } & \text { R/S }\end{array}$
> \{Skip Prompt if Single Solution\}
> \{First or Single Solution\}
> \{End of Program if Single Solution\}
> \{Second Solution \}
> \{End of Program\}

INTERSECTION PROGRAM - LL

XEQ L (XEQ y ${ }^{\mathbf{x}}$ ENTER)

Enter X-Coord. of Point on Line 1 R/S
Enter Y-Coord. of Point on Line 1 R/S
Enter Azimuth of Line 1 (D.MMSSss) R/S
Enter X-Coord. of Point on Line 2 R/S
Enter Y-Coord. of Point on Line 2 R/S
Enter Azimuth of Line 2 (D.MMSSss) R/S
Read X-Coord. of Intersection R/S
Read Y-Coord. of Intersection R/S
Read Distance Point 1 to Intersection R/S
Read Distance Point 2 to Intersection R/S
\{-999 to compute using a second POT\}
\{-999 to compute using a second POT\}
\{End of Program \}

NOTES :

This calculation is also known as a Bearing-Bearing Intersection.
Register X contains the X-Coord. of the Intersection Point
Register Y contains the Y-Coord. of the Intersection Point
Register D contains the Distance from Point 2 to the Intersection Point

INTERSECTION PROGRAM - LC

XEQ M (XEQ 1/x ENTER)
Enter X-Coord. of Point on Line R/S \{POT\}
Enter Y-Coord. of Point on Line
Enter Azimuth of Line (D.MMSSss)
R/S \{POT\}
Enter X-Coord. of Radius Point R/S
Enter Y-Coord. of Radius Point R/S
Enter Radius of Circle R/S
Prompt "SOLUTION 1" R/S
Read X-Coord. of Intersection 1 R/S
Read Y-Coord. of Intersection 1 R/S
Read Azimuth, Rad. Pt. to Intersection 1
Read Distance, POT to Intersection 1
R/S

Prompt "SOLUTION 2"
R/S
R/S
Read X-Coord. of Intersection 2 R/S
Read Y-Coord. of Intersection 2 R/S
Read Azimuth, Rad. Pt. to Intersection 2 R/S
Read Distance, POT to Intersection 2 R/S

\{First or Single Solution\}

\{End of Program if Single Solution\} \{Second Solution\}
\{End of Program \}

NOTES :

This calculation is also known as a Bearing-Distance Intersection.
Register U contains the X-Coord. of Intersection Point 1
Register V contains the Y-Coord. of Intersection Point 1
Register W contains the Azimuth from the Radius Point to Intersection Point 1
Register X contains the X-Coord. of Intersection Point 2
Register Y contains the Y-Coord. of Intersection Point 2
Register Z contains the Azimuth from the Radius Point to Intersection Point 2

INTERSECTION PROGRAM - CC

XEQ N (XEQ +/- ENTER)

Enter X-Coord. of Radius Point 1 R/S
Enter Y-Coord. of Radius Point 2 R/S
Enter Radius of Circle 1 R/S
Enter X-Coord. of Radius Point 2 R/S
Enter Y-Coord. of Radius Point 2 R/S
Enter Radius of Circle 2 R/S
Prompt "SOLUTION 1" R/S
Read X-Coord. of Intersection 1 R/S
Read Y-Coord. of Intersection 1 R/S
Read Azimuth, Rad. Pt. 1 to Intersection 1 R/S
Read Azimuth, Rad. Pt. 2 to Intersection 1 R/S
Prompt "SOLUTION 2" R/S
Read X-Coord. of Intersection 2 R/S
Read Y-Coord. of Intersection 2 R/S
Read Azimuth, Rad. Pt. 1 to Intersection 2 R/S
Read Azimuth, Rad. Pt. 2 to Intersection 2 R/S
\{First or Single Solution\}
\{End of Program if Single Solution\}
\{Second Solution\}
\{End of Program $\}$

NOTES :

This calculation is also known as a Distance-Distance Intersection.
Register U contains the X-Coord. of Intersection Point 1
Register V contains the Y-Coord. of Intersection Point 1
Register J contains the Azimuth from Radius Point 1 to Intersection Point 1
Register K contains the Azimuth from Radius Point 2 to Intersection Point 1
Register X contains the X-Coord. of Intersection Point 2
Register Y contains the Y-Coord. of Intersection Point 2
Register L contains the Azimuth from Radius Point 1 to Intersection Point 2
Register M contains the Azimuth from Radius Point 2 to Intersection Point 2

RATIO PROGRAM

XEQ O (XEQ E ENTER)

Enter X-Value of Beginning Point
Enter Y-Value at Beginning Point
Enter X-Value of Ending Point
Enter Y-Value at Ending Point Displays Ratio X:Y
Y-Value computation -- key XEQ E 015 to run
Enter an increment for the X -Value $\quad \mathrm{R} / \mathrm{S} \quad$ \{Facilitates computation at regular intervals $\}$
$\boldsymbol{\lambda}$ X-Value at which to compute Y-Value R/S \{Accept incremented value or enter another\}
$\boldsymbol{\Gamma}$ Read X-Value and computed Y-Value R/S \{X-Value above and Y-Value below\}
X-Value computation -- key XEQ E 024 to run
$\boldsymbol{\lambda} \mathrm{Y}$-Value for which to compute X -Value R/S
$\boldsymbol{\Gamma}$ Read computed X -Value and Y -Value R / S

R/S \{Typically the first station\}
R/S \{Value at start of taper, super transition, etc.\}
R/S \{Typically the last station\}
R/S \{Value at end of taper, super transition, etc.\}
R/S \{Goes directly into Y-Value computation\}
\{X-Value above and Y-Value below\}

HORIZONTAL CURVE PROGRAM

XEQ H (XEQ SIN ENTER)
Required - Enter at Least One of the Following Three Fields (R/S to Skip) :

Enter the Delta Angle	R/S	\{A? D.MMSS \}
Enter the Degree of Curve	R/S	\{D? D.MMSS - Valid for English Only \}
Enter the Curve Radius	R/S	\{R? English or Metric \}

Optional - Enter One of the Following Fields if Needed :

Enter the Tangent Length	R/S	$\{T ?\}$
Enter the Curve Length	R / S	$\{\mathrm{L} ?\}$
Enter the Chord Length	R / S	$\{\mathrm{C}\}\}$
Enter the Mid-Ordinate	R / S	$\{\mathrm{M} ?\}$
Enter the External Distance	R / S	$\{\mathrm{E} ?\}$

View the Computed Values :
Read the Delta Angle
Read the Degree of Curve
Read the Tangent Length
Read the Curve Length
Read the Curve Radius
Read the Chord Length
Read the Mid-Ordinate
Read the External Distance
Read the Sector Area
Read the Segment Area
Read the Fillet Area
Enter the Station of the PI
Read the PC and PT Stations
$\left.\begin{array}{ll}\text { R/S } & \{\mathrm{A}=\mathrm{D} \cdot \mathrm{MMSS}\} \\ \text { R/S } & \{\mathrm{D}=\mathrm{D} . M M S S ~-~ V a l i d ~ f o r ~ E n g l i s h ~ O n l y ~\end{array}\right\}$

VERTICAL CURVE (\& TANGENT) PROGRAM

XEQ V (XEQ 5 ENTER)
Enter the PVI Station
Enter PVI Elevation
Enter the \% Grade into the PVI (G1)
Enter the \% Grade out of the PVI (G2)
Enter the Length of the Vertical Curve
Read the High or Low Point, If It Exists
Enter a Stationing Increment
7 Enter Any Station
\uparrow Read Elevation at the Entered Station
下 Increment for Next Station

R/S \{Any POT if Computing a Tangent Grade\}
R/S \{Any POT if Computing a Tangent Grade\}
R/S
R/S
R/S
R/S
R/S
R/S
R/S
\{= G1 if Computing a Tangent Grade $\}$
\{Zero if Computing a Tangent Grade\}
\{Elevation in Y- \& Station in X-Registers \}
\{Prompt is STA INC\}
\{Prompt is S?\}
\{Display E=\}

AREA BY COORDINATES PROGRAM		
XEQ A (XEQ R/S ENTER)		
Enter X-Coord. of Beginning Point	R/S	
Enter Y-Coord. of Beginning Point	R/S	
$\boldsymbol{\lambda}$ Enter X-Coord. of Next Point	R/S	
\uparrow Enter Y-Coord. of Next Point	R/S	
\boldsymbol{N} Repeats Until Beginning Point Is Re-entered		
Read Area in Square Feet (or Meters)	R/S	\{Coordinates are assumed to be in feet.\}
Read Area in Acres (Assuming Feet)	R/S	\{If units are Meters, ignore this value.\}
Read Perimeter	R/S	\{End of Program\}
HMS+ PROGRAM		
Enter the first angle in DDD.MMSSss		ENTER
Enter the angle to add in DDD.MMSSss		XEQ P [XEQ () ENTER]
Read the sum of the angles in DDD.MMSSss		
HMS- PROGRAM		
Enter the first angle in DDD.MMSSss		ENTER
Enter the angle to subtract in DDD.MM	SSss	+/- XEQ P [XEQ () ENTER]
Read the difference of the angles in DDD.MMSSss		
POLAR \rightarrow RECTANGULAR ($\mathrm{y}, \mathrm{x} \rightarrow \theta$,r) FUNCTION		
Enter the Distance		ENTER
Enter the Azimuth (D.MMSSss)		XEQ J [XEQ TAN ENTER]
Read the X-Coordinate difference		\{X-Difference in the Y-Register\}
Read the Y-Coordinate difference		\{Y-Difference in the X-Register\}
RECTANGULAR \rightarrow POLAR (θ, $\mathrm{r} \rightarrow \mathrm{y}, \mathrm{x})$ FUNCTION		
Enter the X-Coordinate difference		ENTER
Enter the Y-Coordinate difference		XEQ K [XEQ $\backslash^{\text {x ENTER }}$]
Read the resulting distance		\{Distance in the Y-Register\}
Read the resulting azimuth in DDD.MM		\{Azimuth in the X-Register\}

XEQ A (XEQ R/S ENTER)

Enter X-Coord. of Beginning Point R/S
Enter Y-Coord. of Beginning Point R/S
$\boldsymbol{\pi}$ Enter X-Coord. of Next Point R/S
个 Enter Y-Coord. of Next Point R/S
V Repeats Until Beginning Point Is Re-entered Read Area in Square Feet (or Meters) R/S Read Area in Acres (Assuming Feet) R/S R/S
\{Coordinates are assumed to be in feet.\} \{If units are Meters, ignore this value.\} \{End of Program $\}$

ENTER
+/- XEQ P [XEQ () ENTER]

POLAR \rightarrow RECTANGULAR ($\mathrm{y}, \mathrm{x} \rightarrow \theta$,r) FUNCTION

Enter the Distance
Enter the Azimuth (D.MMSSss)
Read the X-Coordinate difference
Read the Y-Coordinate difference

ENTER
XEQ J [XEQ TAN ENTER]
\{X-Difference in the Y-Register\}
\{Y-Difference in the X-Register\}

BEARING \rightarrow AZIMUTH PROGRAM

$\begin{array}{lll}\boldsymbol{\pi} & \text { Enter the Bearing to be converted } & \text { R/S }\end{array}$ \{In DMS \}$\left.\}=\mathrm{SE}, 3=\mathrm{SW}, 4=\mathrm{NW}\right\}$

AZIMUTH \rightarrow BEARING PROGRAM XEQ Q (XEQ EQN ENTER)

$\boldsymbol{\lambda}$ Enter the Azimuth to be converted
R/S \{DMS $\}$
\uparrow Read the Bearing
R/S \{DMS
$\boldsymbol{\kappa}$ Read the Quadrant code of the bearing $\mathrm{R} / \mathrm{S} \quad\{1=\mathrm{NE}, 2=\mathrm{SE}, 3=\mathrm{SW}, 4=\mathrm{NW}\}$

