Sight Distance and Vertical Alignments

Minnesota Department of Transportation

Advanced Design Flexibility Workshop

Minnesota Department of Transportation

Advanced Design Flexibility Workshop

Session 9

Sight Distance and Vertical Alignments

SSD Historical Perspective

Parameters	1940 A Policy on Sight Distance for Highways	1954 A Policy on Geometric Design - Rural Highways	1965 A Policy on Geometric Design - Rural Highways	1971 A Policy on Geometric Design of Highways and Streets	1984 and 1990 A Policy on Geometric Design Highways and Street	
Design Speed	Design Speed	85 to 95 percent of design speed.	80 to 93 percent of design speed.	Min 80 to 93 percent of design speed. Des design speed.	Min 80 to 93 percen of design speed. Des design speed.	
Perception - Reaction Time	Variable: 3.0 sec at 30 mph 2.0 sec at 70 mph	2.5 sec	2.5 sec	2.5 sec	2.5 sec	
Design Pavement/ Stop	Dry Pavement Locked-wheel Stop	Wet Pavement Locked-wheel Stop	Wet Pavement Locked-wheel Stop	Wet Pavement Locked-wheel Stop	Wet Pavement Locked-wheel Stop	
Friction Factors	Ranges from 0.50 at 30 mph to 0.40 at 70 mph	Ranges from 0.36 to 30 mph to 0.29 to 70 mph	Ranges from 0.36 to 30 mph to 0.27 at 70 mph	Ranges from 0.35 at 0.30 mph to 0.27 at 70 mph	Slightly higher at higher speeds than 1970 values	
Eye Height	4.5 ft	4.5 ft	3.75 ft	3.75 ft	3.5 ft	
Object Height	4.0 in	4.0 in	6.0 in	6.0 in	6.0 in	

Minnesota Department of Transportation University of Minnesota Center for Transportation Studies

SSD Historical Perspective

History of the Object Height

(Kahl and Fambro, TRR 1500)

• In the 1965 AASHO policy, the object height was increased from 4" to 6"; however, the rationale used to justify the 6" object was the same rationale used for the 4" object. It has been suggested that the object height was increased to offset a decrease in the driver's eye height and thus keep the required lengths of crest vertical curves relatively constant.

SSD Historical Perspective

History of the Object Height

(Kahl and Fambro, TRR 1500)

• In 1984, the rationale for using the 6" object changed. The 1984 and 1990 Green Books state that an object height of 6" is "largely an arbitrary rationalization of possible hazardous objects and a driver's ability to perceive and react to a hazardous situation."

Object-Related Accident Study

 "only 0.07% of the reportable accidents involved small objects in the roadway. More than 90% of these accidents occurred at night on straight, flat roadways... and they did <u>not</u> result in serious injuries."

Research performed at the Texas Transportation Institute

Minnesota Department of Transportation

Advanced Design Flexibility Workshop

Sight Distance and Vertical Alignments

•								
	SSD Design Values							
	Consider the effect of steep grades							
			US C	ustom	ary			
	Design Stopping sight distance (ft)							
	speed	Downgrades		des	U	pgrade	35	
	(mph)	3 %	6 %	9 %	3 %	6 %	9%	
	15	80	82	85	75	74	73	
	20	116	120	126	109	107	104	
	25	158	165	173	147	143	140	
	30	205	215	227	200	184	179	
	35	257	271	287	237	229	222	
	40	315	333	354	289	278	269	
	45	378	400	427	344	331	320	
	50	446	474	507	405	388	375	
	From Exhibit 3-2, AASHTO Green Book							
			_			SSD on (Grades	

Minnesota Department of Transportation

Advanced Design Flexibility Workshop

Insights on AASHTO SSD Model

- Uses upper percentile values
 - 90th percentile deceleration rate
 - 90+ percentile eye and object height
- Uses same design value for a given design speed irrespective of other conditions
- "for moderate reductions in available stopping sight distance, there are no noticeable safety problems"

NCHRP Report 400

Minnesota Department of Transportation

Advanced Design Flexibility Workshop

Sight Distance and Vertical Alignments

Risk Assessment Guidelines

<u>Guide for Achieving Flexibility in Highway</u> <u>Design - AASHTO</u>

- Assess the risk of a location with SSD below current criteria. Risk is related to traffic volume (exposure) and other features within the sight restriction (intersections, narrow bridges, high-volume driveways, sharp curvature)
- "Where no high-risk features exist within the sight restriction, nominal <u>deficiencies as great as 5-10</u> <u>mph</u> may not create an undue risk of increased crashes."

Risk Management					
Relative Safety Risk of Various Conditions in Combination with Non-Standard Stopping Sight Distance					
Geometric Condition	Relative Safety Risk				
Low-volume intersection	Significant				
Y-diverge on road					
Sharp curvature <1000 ft radius	Significant				
Steep downgrade (>5%)	Significant				
Narrow structure	Significant				
Narrow Pavement	Significant				
Freeway lane drop	Significant				
Narrow Pavement Freeway lane drop	Significant Significant				

Minnesota Department of Transportation

Advanced Design Flexibility Workshop

Risk Considerations

Situation: Horizontal sight restriction at the end of a downgrade

Session 9

Specific Concern: Truck speeds may be high at the end of a long downgrade and the greater eye height of the truck driver is of little advantage seeing past a horizontal sight obstruction

judge acceptable gaps in traffic approaching from the horizontal sight obstruction

Minnesota Department of Transportation

Advanced Design Flexibility Workshop

Sight Distance and Vertical Alignments

Minnesota Department of Transportation University of Minnesota Center for Transportation Studies

Decision Sight Distance

Distance allowed for:

Session 9

- Detecting complex or unexpected conditions
- Recognizing information difficult to perceive
- Corroborating advance warning and performing appropriate maneuvers (i.e. path change, speed change)
- Performing evasive maneuvers

Minnesota Department of Transportation

Advanced Design Flexibility Workshop

Sight Distance and Vertical Alignments

Decision Sight Distance

- If over 90% of crashes have a driver component, how might Decision Sight Distance correlate to those crashes?
- Consider Decision Sight Distance during Project Safety Reviews of the design

Minnesota Department of Transportation

Advanced Design Flexibility Workshop

	• •							
Design Criteria for Sag Vertical Curves								
Sag Vertical Curves Based on Headlight Sight Distance Comfort criterion Refer to 2004 Green Book Exhibit 3-75								
Desig speed	Stopping n sight distance	Rate of curvatu	vertical re, K ^e	"Sag vertical curves shorter than the lengths computed				
(mph)) (ft)	Calculated	Design	from Exhibit 3-75 may be				
15 20 25 30 35 40 45	80 115 155 200 250 305 360 425 Exhibit 3-75. Design	9.4 16.5 25.5 36.4 49.0 63.4 78.1 05.7 Controls for Sag Vert	10 17 26 37 49 64 79 08 tical Curves	justified for economic reasons in cases where an existing feature, such as a structure not ready for replacement, controls the vertical profile." -AASHTO Green Book – p. 276				
			•	• • • • • • •				

Minnesota Department of Transportation

Advanced Design Flexibility Workshop

<section-header><section-header> Maximum Grades Sesed on Design Speed and Terrain Context 5% max grade for 70 mph design speed depending on terrain 5% for 30 mph design speed depending on terrain 1nterstate Standard 6% max grade for mountainous terrain and 50 mph design speed

Minnesota Department of Transportation

Session 9

Sight Distance and Vertical Alignments

Operational Considerations

- Downgrades increase braking distance and vehicle speeds
- Upgrades increase speed differentials between passenger cars and heavy vehicles
- Upgrades slow traffic and may create platooning
- Vertical curvature may limit sight distance

Minnesota Department of Transportation University of Minnesota Center for Transportation Studies

Minnesota Department of Transportation

Advanced Design Flexibility Workshop

University of Minnesota Center for Transportation Studies

Session 9

