

Horizontal Alignment

The shortest distance between two points is:

- A straight line
- The circumference of a circle passing through both points and the center of the sphere
- Always under construction

Session 8

Horizontal Alignments and Horizontal-Vertical Coordination

Horizontal Curve Safety

```
Approximately 25% of all fatal crashes occur
along horizontal curves
```

Average crash rates for horizontal curve segments are about 3 times that of tangent segments

AASHTO Curve Design Model

$$
e+f=V^{2} / 15 R
$$

e = superelevation

$\mathrm{V}=$ design speed (mph)

R = radius of curve
(ft)

Session 8

Horizontal Alignments and Horizontal-Vertical Coordination

Side Friction Factor Assumptions

- Maximum "f" based upon avoiding driver discomfort
- Provides ample margin of safety against skidding

2004 Greenbook Exhibit 3-12 for recommended side friction values in design

Side Friction Factor Assumptions

Session 8

Horizontal Alignments and Horizontal-Vertical Coordination

Side Friction Factor Assumptions

- Shows how side friction is developed as degree of curvature increases
- Numbers in circles refer to "methods" of distribution

From 2004 Greenbook Exhibit 3-13: Methods of
Distributing Superelevation and Side Friction

Side Friction Factor Assumptions

Method 2

- Maxes out side friction before introducing superelevation
- Used for lowspeed urban streets

From 2004 Greenbook Exhibit 3-13: Methods of Distributing Superelevation and Side Friction

Session 8

Horizontal Alignments and Horizontal-Vertical Coordination

Side Friction Factor Assumptions

Method 3

- Introduces no side friction at design speed until max super rate is achieved
- Not used for design

From 2004 Greenbook Exhibit 3-13: Methods of
Distributing Superelevation and Side Friction

Side Friction Factor Assumptions

Method 4

- Same as

Method 3
except that a
running speed
is assumed

- Avoids having
to steer against
super at less
than design
speed

From 2004 Greenbook Exhibit 3-13: Methods of Distributing Superelevation and Side Friction

Session 8

Horizontal Alignments and Horizontal-Vertical Coordination

Side Friction Factor Assumptions

Method 5

- Used for rural
and high-speed urban design
- Parabolic
smoothing out of Method 4
- Little side
friction on flat curves; more as curves sharpen

From 2004 Greenbook Exhibit 3-13: Methods of
Distributing Superelevation and Side Friction

Session 8

Horizontal Alignments and Horizontal-Vertical Coordination

Minimum Rates of Superelevation and Calculated Length of Runoff for Low-Speed Roadways in Urban Locations ($\left.\mathrm{e}_{\mathrm{maz}}=0.06 \mathrm{ft} / \mathrm{ft}\right)(\mathrm{S}=0.0025 \mathrm{ft} / \mathrm{ft})$

RADIUS OF CURVE (R)	$\mathrm{V}=20 \mathrm{mph}$		$\mathrm{V}=25 \mathrm{mph}$		$\mathrm{V}=30 \mathrm{mph}$		$\mathrm{V}=35 \mathrm{mph}$		$\mathrm{V}=40 \mathrm{mph}$	
	e	L								
700	NC	0								
600	NC	0	NC	0	NC	0	NC	0	RC	96.0
500	NC	0	NC	0	NC	0	NC	0	0.035	168.0
450	NC	0	NC	0	NC	0	RC	96.0	0.050	283.2

Session 8

Horizontal Alignments and Horizontal-Vertical Coordination

. High Speed (constrained conditions)

Figure 3-3.03A

- Curvature / speed/ superelevation chart using maximum side friction factors
- Useful tool for developing solutions in constrained or special circumstances

Session 8

Horizontal Alignments and Horizontal-Vertical Coordination

Session 8

Horizontal Alignments and Horizontal-Vertical Coordination

Spiral Curve Transitions

- Provides a more natural turning path
- Minimizes encroachment into adjacent lane
- Provides a suitable location for superelevation runoff

Session 8

Horizontal Alignments and Horizontal-Vertical Coordination

Horizontal Curve Safety

```
Approximately 25% of all fatal crashes occur
along horizontal curves
```

Average crash rates for horizontal curve segments are about 3 times that of tangent segments

Do Drivers skidioff the roadio drive off the road

Risk Assessment for Horizontal Alignment

The speed of vehicles entering a curve is influenced by the horizontal and vertical alignment on the approaches. Risk varies as a function of the approach speed distribution.

- Avoid sharp curves at ends of long tangents
- Introduce sharp curvature through series of successively sharper curves
- Eliminate/minimize access near horizontal curves

Session 8

Horizontal Alignments and Horizontal-Vertical Coordination

Truck Operations on Curves

- Trucks with high centers of gravity may overturn before losing control due to skidding
- Trucks on downgrade curves generate greater lateral friction
- Margin of safety for ' f ' is lower for trucks

Managing the Risk

Will two horizontal curves of the same radius with similar cross sections and traffic volumes always have a similar safety performance?

Session 8

Horizontal Alignments and Horizontal-Vertical Coordination

Session 8

Horizontal Alignments and Horizontal-Vertical Coordination

Session 8

Horizontal Alignments and Horizontal-Vertical Coordination

Session 8

Horizontal Alignments and Horizontal-Vertical Coordination

Exercise

